I/l mdn web docs

Streams API

Note: This feature is available in Web Workers.

The Streams API allows JavaScript to programmatically access streams of data

received over the network and process them as desired by the developer.

Concepts and usage

Streaming involves breaking a resource that you want to receive over a network
down into small chunks, then processing it bit by bit. Browsers already do this
when receiving media assets — videos buffer and play as more of the content
downloads, and sometimes you'll see images display gradually as more is loaded
too.

But this capability has never been available to JavaScript before. Previously, if we
wanted to process a resource of some kind (video, text file, etc.), we'd have to
download the entire file, wait for it to be deserialized into a suitable format, then
process all the data.

With the Streams API, you can start processing raw data with JavaScript bit by bit,
as soon as it is available, without needing to generate a buffer, string, or blob.

»w»ﬁ%@ww

E

Fetch from Process Data Render Data
network

There are more advantages too — you can detect when streams start or end,
chain streams together, handle errors and cancel streams as required, and react

to the speed at which the stream is being read.

The usage of Streams hinges on making responses available as streams. For

example, the response body returned by a successful fetch request is a

ReadableStream that can be read by a reader created with

ReadableStream.getReader() .

More complicated uses involve creating your own stream using the

ReadableStream() constructor, for example to process data inside a service worker.

You can also write data to streams using writableStream.

Note: You can find a lot more details about the theory and practice of

streams in our articles — Streams API| concepts, Using readable streams,

Using readable byte streams, and Using writable streams.

Stream interfaces

Readable streams

ReadableStream

Represents a readable stream of data. It can be used to handle response
streams of the Fetch API, or developer-defined streams (e.g. a custom

ReadableStream() constructor).

ReadableStreamDefaultReader

Represents a default reader that can be used to read stream data supplied from

a network (e.g. a fetch request).

ReadableStreamDefaultController

Represents a controller allowing control of a Readablestream's state and internal

queue. Default controllers are for streams that are not byte streams.

Writable streams

WritableStream

Provides a standard abstraction for writing streaming data to a destination,

known as a sink. This object comes with built-in backpressure and queuing.

WritableStreamDefaultWriter

Represents a default writable stream writer that can be used to write chunks of

data to a writable stream.

WritableStreamDefaultController

Represents a controller allowing control of a writablestream's state. When

constructing a writablestream, the underlying sink is given a corresponding

WritableStreamDefaultController instance to manipulate.

Transform Streams

TransformStream

Represents an abstraction for a stream object that transforms data as it passes

through a pipe chain of stream objects.

TransformStreamDefaultController

Provides methods to manipulate the ReadableStream and writableStream

associated with a transform stream.

Related stream APIs and operations

BytelLengthQueuingStrategy

Provides a built-in byte length queuing strategy that can be used when
constructing streams.

CountQueuingStrategy

Provides a built-in chunk counting queuing strategy that can be used when
constructing streams.

Extensions to other APIs

Request

When a new Request Object is constructed, you can pass it @ ReadableStream in

the body property of its Requestinit dictionary. This Request could then be
passed to a fetch() to commence fetching the stream.

Response.body

The response body returned by a successful fetch request is exposed by

default as a RrReadablestream, and can have a reader attached to it, etc.

ByteStream-related interfaces

ReadableStreamBYOBReader

Represents a BYOB ("bring your own buffer") reader that can be used to read

stream data supplied by the developer (e.g. a custom ReadableStream()
constructor).

ReadableByteStreamController

Represents a controller allowing control of a Readablestream's state and internal

queue. Byte stream controllers are for byte streams.

ReadableStreamBYOBRequest

Represents a pull into request in @ ReadableByteStreamController .

Examples

We have created a directory of examples to go along with the Streams API

documentation — see mdn/dom-examples/streams . The examples are as

follows:

e Simple stream pump : This example shows how to consume a

ReadableStream and pass its data to another.

e Grayscale a PNG : This example shows how a ReadableStream of a PNG can

be turned into grayscale.

e Simple random stream : This example shows how to use a custom stream to

generate random strings, enqueue them as chunks, and then read them back

out again.

e Simple tee example : This example extends the Simple random stream

example, showing how a stream can be teed and both resulting streams can

be read independently.

e Simple writer : This example shows how to write to a writable stream, then

decode the stream and write the contents to the UI.

used to transform a ReadableStream into a stream of other data types by

transforming a data of a PNG file into a stream of PNG chunks.

Examples from other developers:

e Progress Indicators with Streams, Service Workers, & Fetch

Specifications
Specification

Streams Standard

rs-class

Streams Standard

ws-class

Browser compatibility

api.ReadableStream

Report problems with this compatibility data on GitHub

Chrome
Firefox
Opera

ReadableStream

[Symbol.asynclterator] 124 124 110 110

ReadableStream() 52 79 65 39
constructor

cancel 43 14 65 30
from() static No No 117 No

method

Safari

101

No

101

101

No

Chrome Android

124

52

43

No

Firefox for Android

110

65

65

117

Opera Android

82

41

30

No

(O]

e

()

| -

c

(@
getReader 43
locked 52
pipeThrough 59
pipeTo 59
tee 52
transferable 87
values 124

Tip: you can click/tap on a cell for more information.

Full support Partial support

Experimental. Expect behavior to change in the future.

Has more compatibility info.

api.WritableStream

14

79

79

79

87

124

Firefox

65

102

100

65

103

110

No support

5 5

s 3

30 10.1
39 10.1
46 10.1
46 10.1
39 10.1
73 No
110 No

See implementation notes.

Report problems with this compatibility data on GitHub

Chrome Android

52

59

59

52

87

124

Firefox for Android

65

102

100

65

103

110

Opera Android

41

43

43

41

62

82

WritableStream

WritableStream()
constructor

abort

close

getWWriter

locked

transferable

Chrome

59

59

81

59

59

87

Edge

16

16

81

16

16

87

Firefox

100

100

100

100

100

100

103

Opera

47

47

68

47

47

73

Tip: you can click/tap on a cell for more information.

Full support

See also

Partial support

Streams API concepts

Using readable streams

Using readable byte streams

Using writable streams

Help improve MDN

Was this page helpful to you?

No support

Safari

141

141

141

141

141

141

No

Chrome Android

59

59

59

81

59

59

87

Has more compatibility info.

Firefox for Android

100

100

100

100

100

100

103

Opera Android

44

44

58

44

44

62

Safarion iOS

14.5

14.5

14.5

14.5

14.5

14.5

No

‘ YesJ‘ No ’

Learn how to contribute.

This page was last modified on Jul 26, 2024 by MDN contributors.

